Optical Backscattering Measured by Airborne Lidar and Underwater Glider

نویسندگان

  • James H. Churnside
  • Richard D. Marchbanks
  • Chad Lembke
  • Jordon Beckler
چکیده

The optical backscattering from particles in the ocean is an important quantity that has been measured by remote sensing techniques and in situ instruments. In this paper, we compare estimates of this quantity from airborne lidar with those from an in situ instrument on an underwater glider. Both of these technologies allow much denser sampling of backscatter profiles than traditional ship surveys. We found a moderate correlation (R = 0.28, p < 10−5), with differences that are partially explained by spatial and temporal sampling mismatches, variability in particle composition, and lidar retrieval errors. The data suggest that there are two different regimes with different scattering properties. For backscattering coefficients below about 0.001 m−1, the lidar values were generally greater than the glider values. For larger values, the lidar was generally lower than the glider. Overall, the results are promising and suggest that airborne lidar and gliders provide comparable and complementary information on optical particulate backscattering.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical simulation of light backscattering by spheres with off-center inclusion. Application to the lidar case.

A Mie backscattering model for spherical particles with off-center inclusion has been developed and tested. The program is capable of dealing with size parameter values up to approximately 1000, thus allowing one to simulate the optical behavior of a large variety of atmospheric aerosols, as well as cloud and precipitation particles. On the basis of this model, we simulated the optical properti...

متن کامل

An Approach for Operation Depth Reduction of an Underwater Glider Propelled by Ocean Thermal Energy

The underwater Gliders are a kind of autonomous vehicles that have a special role in ocean surveys which demand continuous monitoring and long endurance. Because of low energy consumption and long endurance, these vehicles are favorite for these missions. Among this, a type of gliders can harvest ocean thermal energy, causing significant endurance increase. These vehicles need at least 680 mete...

متن کامل

Hydrodynamic Improvement of underwater glider by Computational Fluid Dynamics method

Gliders are new marine vehicles which have research and military uses and they move by sequent diving and climbing. Suitable design of its main body and wings are important for the most advance velocity. hydrodynamic design variables are main body form, wings (cross section, dimensions, shape, longitudinal and vertical position) and hydrostatic parameters (static trim angle, amount of added for...

متن کامل

Bistatic receiver model for airborne lidar returns incident on an imaging array from underwater objects.

We develop a bistatic model for airborne lidar returns collected by an imaging array from underwater objects, incorporating additional returns from the surrounding water medium and ocean bottom. Our results provide a generalization of the monostatic model by Walker and McLean. In the bistatic scheme the transmitter and receiver are spatially separated or are not coaligned. This generality is ne...

متن کامل

Numerical simulation of hydrodynamic properties of Alex type gliders

Simulation of an underwater glider to investigate the effect of angle of attack on the hydrodynamic coefficients such as lift, drag, and torque. Due to the vital role of these coefficients in designing the controllers of a glider and to obtain an accurate result, this simulation has been studied at a range of operating velocities. The total length of the underwater glider with two wings is 900 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017